
ISRAEL J O U R N A L  OF MATHEMATICS 94 (1996), 111-123 

BOUNDARY MEASURES OF MARKOV CHAINS 

BY 

ELISE CAWLEY* 

Department of Mathematics, University of Chicago 

5734 University Avenue, Chicago, IL 60637, USA 
e-mail: cawley@math.uchicago.edu 

AND 

BRIAN MARCUS 

IBM Almaden Research Center, K65/802 

650 Harry Road, San Jose, CA 95120, USA 

e-mail: marcus@almaden.ibm.corn 

AND 

SELIM TUNCEL** 

Department of Mathematics 

University of Washington, Seattle, WA 98195, USA 
e-mail: tuncel@math.washington.edu 

ABSTRACT 

It is known that each Markov chain has associated with it a polytope 

and a family of Markov measures indexed by the interior points of the 

polytope. Measure-preserving factor maps between Markov chains must 

preserve the associated families. In the present paper, we augment this 

structure by identifying measures corresponding to points on the boundary 

of the polytope. These measures are also preserved by factor maps. We 

examine the data they provide and give examples to illustrate the use of 

this data in ruling out the existence of factor maps between Markov chains. 
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1. I n t r o d u c t i o n  

An irreducible matrix of nonnegative polynomials determines a shift of finite type 

with weights on its periodic orbits. We study weight-preserving factor maps be- 

tween such systems, corresponding to measure-preserving factor maps between 

Markov chains. Letting R ++ denote the positive reals, this appropriation of 

polynomial matrices for the study of Markov chains stems from the fact a fam- 

ily of Markov measures indexed by (R ++)k for a suitable k may be invariantly 

associated to a single Markov measure [7]. We saw in [3] that the interior of 

the weight-per-symbol polytope of [2] may be naturally identified with (R++)k; 

every element of the family of Markov measures thus corresponds to an interior 

point of the polytope. 

In the present paper we identify measures corresponding to points on the 

boundary of the polytope. These boundary measures are obtained by taking 

limits of interior measures. Though interior measures are irreducible, bound- 

ary measures are often not. However, the support of a boundary measure is 

a nonwandering shift of finite type and we identify the irreducible components 

of the support as specific selections from the boundary components defined in 

[2]. The restriction of the boundary measure to one of these components is, 

after normalization, the naturally induced Markov measure of [1, 2]. Hence, a 

boundary measure is characterized by the list of factors by which it scales the 

Markov measures of the boundary components, data that  is conveniently stored 

in a probability vector. We give examples to illustrate the use of this data  in 

ruling out the existence of factor maps between Markov chains. 

In order to define a boundary measure at a point, we need the beta function to 

be analytic at that  point. We start by summarizing the definitions and facts we 

need from [2, 7], including a result showing that the beta function is analytic at 

most boundary points. Then we give the main results, whose proofs use tools of 

[7] involving connecting paths between boundary components. We end the paper 

with examples. 

2. Markov chains and boundar ies  

Let R = Z[Xl=e,..., x~] be the ring of Laurent polynomials with integral coeffi- 

cients in the variables x l , . . . ,  xk and let R + = Z + [ x ~ , . . . ,  x~] be its positive cone 

consisting of polynomials with positive coefficients and the zero polynomial. For 

~,1 ~2. ~k of R, we will write log(m) = (wl, W 2 ,  �9 Wk). a m o n o m i a l m = x  I x 2 . . x  k .. , 
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Let A be an irreducible matrix over R +. Whenever we substitute positive 

numbers a l , . . . ,  ak for x l , . . . ,  xk we get an irreducible nonnegative real-valued 

matrix; let ~A (a l , . . . ,  ak) be the maximum eigenvalue of A ( a l , . . . ,  ak) furnished 

by the Perron-Frobenius theorem [6]. The resulting function fl = flA: (R ++)k __~ 

R ++ is the b e t a  f u n c t i o n  of A. Clearly fl is an algebraic function. Correspond- 

ing to fl there are left and right eigenvectors, l = IA and r = rA, of A over Rift]. 

For example we could take l and r to be a row and a column, respectively, of the 

adjoint of ~ I  - A. Make sure that the entries of I are coprime; likewise for r. Let 

us agree to refer to the elements of the indexing set of A as its s ta tes .  

The matrix A defines a weighted graph G(A): The vertices of G(A) are the 

states of A. For states I,  J,  the corresponding entry A(I,  J) ,  if nonzero, is a 

sum of monomials, possibly with multiplicity. For each monomiM in this sum 

G(A) has an edge from I to J with that  monomial as its weight. We denote 

the weight of an edge e by wtA(e). The weigh t  of a path e l " ' e , ~  in G(A) 

is w tA( e l . . . e n )  = l-[~1 wtA(ei). The w e i g h t - p e r - s y m b o l  (wps)  of a cycle 

= e l ' " e n  of G(A) is defined to be 

1 log(wtA(7)) e ~ .  WpSA ('y) = 

From the weighted graph G(A) we obtain EA, a shift of finite type with wps's 

assigned to its periodic orbits. In fact, EA represents a shift of finite type with 

a family of Markov measures #A(al ..... ak) indexed by ( a l , . . . , a k )  C (R++)k: Let 

T = ~ r  l (I)r(I) ,  the sum being over all states I of A. Considering a cylinder set 

[e0, e l , . . . , e m ] h  : {(Yn) E EA: Yh =eO, Yh+l = e l , . . . , y h + m  = e ~ } ,  

identify the starting state I of e0 and the terminal state J of era. The measure 

,A(o, ...... e l , . . . , em]h)  

then equals the value at ( a l , . . . ,  ak) of 

l(I) wtA(eoel " " em)r (J ) /T~  m+l. 

The motivation for this framework stems from the fact that  for a number of 

coding problems the family # A ( a l  ..... a~) may be invariantly associated with any 

one of its generic elements; this is explained in detail in w of [7]. 
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According to [2], the convex hull, taken in Qk, of 

Isr. J. Math. 

{WpSA(7): 3' cycle of G(A)} 

is a polytope, which we call the we igh t -pe r - symbo l  p o l y t o p e  of A and denote 

W(A). Let F be a face of W(A). Consider the subgraph of G(A) obtained by 

keeping only those edges e that lie on a cycle "y with wpsm('), ) E F. By [2], this 

subgraph is nonwandering in the sense that whenever an edge of it leads from a 

state I to a state J then, in fact, I and J lie in the same irreducible component. 

The irreducible components of this subgraph, we call the F - c o m p o n e n t s  of A. 

Before going any further, we take advantage of the fact that a change of variable 

and division by a monomial allow us to view F very concretely and make the 

following standing assumption. (See the discussion preceding (11) of [7].) 

STANDING ASSUMPTION. We have W(A) C { ( u l , . . . , u k )  E Qk: uk _> 0} and 

F = c Qk: = 0} n W(A) .  

Let AF,1, AF,2,..., AF, l be the irreducible submatrices of A representing the 

F-components of A. One consequence of our standing assumption is that  each 

W(AF, i) is contained in { ( x l , . . . , x k )  e Qk: xk = 0} and, consequently, that  

f~AF., does not depend on xk. Write y = xk. We extend 13 by putting, for 

a l , . . . , a k - 1  ;> 0, 

f l ( a l , . . .  , ak - l ,0 )  = max{~AF.,(al,... ,ak-1): 1 < i < l}. 

Then 13 is continuously defined on { (x l , . . . ,  xk) E Rk: X l , . . . ,  xk-1 > 0, xk _> 0}, 

and analytic on (N++) k. It may fail to be analytic at some points of the form 

( a l , . . . , a k - l , 0 ) .  We will recall from [7] a result related to this. Let d be the 

degree of ~ over R. Let y = z d! and define, for x l , . . . ,  xk-1 > 0, z >_ 0, 

~ ( X l , . . . , X k - I , Z )  "= ~ ( X l , . . . , X k - l , z d ! ) .  

Let 

D = { (a l , . . .  ,ak-1) E (•++)k-l: ~ is analytic at ( a l , . . .  , ak- l ,0)} .  

For a subset S of R k- l ,  we shall also write S for the set S x {0} C Rk; it will 

always be clear from the context whether we are thinking of S as a subset of R k-1 
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or of R k. We similarly identify the points ( a l , . . . ,  ak-1) and ( a l , . . . ,  ak-1, 0). 

Note that  

~ ( a l , . . . , a k - 1 )  = / 3 ( a l , . . . , a k - 1 ) .  

It was shown in [7] that  there exists a proper variety V C R k-1 such that  

(R++) k-1 \ V C D. Consequently, D is an open dense subset of (R++) k-1 with 

finitely many connected components. Also by [7], for a connected component Do 

of D and an F-component AF, i of A, one of two possibilities must hold. Either 

/3AF,, --/3 on Do, in which case we call AF, i a p r inc ipa l  c o m p o n e n t  ( for  Do), 

or /3AF,~ < /3 on Do, in which case we call AF, i a n o n p r i n c i p a l  c o m p o n e n t  

(for  D0). 

Finally, let B also be an irreducible matrix over R +. By a f a c t o r  m a p  

r ~A ~ ~B we shall mean a bounded-to-one shift-commuting continuous sur- 

jection between the shifts of finite type that is wps-preserving in the sense that  

wpsB(r = wpsA(~/) for every periodic orbit 7 of EA. When such a map exists, 

/3A = /3B, W ( A )  = W ( B )  and F-components of A cover those of B. As already 

mentioned, the wps-preserving condition corresponds to the requirement that  r 

preserve the related Markov measures. 

Details of the above definitions and facts may be found in [2] and [7]. 

3. B o u n d a r y  m e a s u r e s  

We work on a connected component Do of D. Recall that d is the degree of/3 

and y = xk = z d', and write R Z[x~, . .  + + : . ,xk_ 1,z ]. Let f �9 RIll .  For any 

( a l , . . . ,  ak-1) �9 D0, the function f has an expansion 

zn~ E Cw(Xl -- a l )Wl"" "  (Xk-1 -- ak--1)~k-~ Z~'k 
we(Z+)k 

with c~ E R and no E Z. The series is absolutely convergent in a neighbourhood 

O of ( a l , . . . , a k - l , 0 )  in C k and converges to f ( x l , . . . , X k - l , Z )  on O N (]R+) k. 

Rearranging the terms and using analytic continuation, we write 

o o  

f ( x l , . . . , X k _ l , Z )  = f n ( x l , . . . , X k _ l ) Z  
n ~ n o  

with no C Z, ]no nontrivial, each fn analytic on Do and the (Laurent) series 

absolutely convergent on a neighbourhood of Do in C k (except, when no < 0, 
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on Do). As in [7], we define 6(f) -- no and fF = fno zn~ For the zero function 

f = 0, we take / f ( f )  = oc and fF = 0. Since y = z ~, the ring R[f/] is embedded 
N 

in R[j3], which gives meaning to f f  and ~F for f E R[/~]. Note that,  as a result 

of our standing assumption,/f(~3) = 0 and 

J ~ F ( X l , . . . , X k - - 1 )  -'- ~ ( X l , . - . , X k - - l , 0 )  = ~ ( X l , . . . , X k - - l , 0 )  > 0 

on Do. Recall that  l = 1A and r = rA denote left and right coprime eigenvectors 

over R[J3]. 

LEMMA 1: I[ two states I, J of A belong to the same F-component of A then 

6( l( I) r( I) ) = tf( l( g) r( J) ). 

Proof." Since I and J belong to the same F-component we can find two paths, 

one leading from I to J the other from J to I, such that their respective weights 

m and m' satisfy tf(mm') = O. Let n and n' be the respective lengths of these 

paths. Note that 

Z'~r(I) = (Anr)(I) = ~ _ A n ( I ,  K) r (g )  
K 

and that mr(J)  is an element of the sum on the right. Moreover every r(K)F is 

nonnegative by Perron-Frobenius theory [6], and we can conclude 

6(r(I)) = 6(fl n r(I)) < $(mr(J)). 

From the equation t3 n ' l(I)  = (IA ~') (I) we similarly obtain 

6(l(I)) <_ 6(m'l(J)). 

Hence, 

6(l( I)r( I) ) = ~(l( I) ) + tf(r( I) ) < tf(mm') + 6(l( g)r( J) ) = tf(l( J)r( J) ). 

Interchanging the roles of I and J,  we also have ~f(l(J)r(J)) < tf(l(I)r(I)). | 

For an F-component AF, i, Lemma 1 allows us to pick any state I of the 

component and define the o r d e r  of 5(AF, i) on Do to equal tf(l(I)r(I)). Let 

/f(A, F)  be the minimum of 5(AF, i) taken over all principal F-components. We 

will see in Lemma 3 that ~f(AF, j) > 6(A, F) whenever AFd is a nonprincipal 

F-component.  We first state our main result, which involves the (principal) 

F-components AF, i with 6(AF, i) = 6(A, F). 
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THEOREM: Let a ---- ( a l , . . . ,  ak-1) E D, and let Do be the connected component 

of D containing a. Let A1, . . . ,  A~ be the principal F-components whose order 

on Do is minimal 

(i) The limit 

exists for every cylinder set C of EA, and this defines a shift-invariant 

probability measure on (the shift of finite type underlying) EA. 

(ii) The support of #(A,a) iS given by A I , . . . ,  An: It equals the (disjoint) union 

of the shifts of finite type ~ A i  , i : 1, . . . ,  n. 

(iii) The restriction of #(A,a) to each ~A~ is a constant multiple of the Markov 

measure #A~(~). The constant in question, #(A,~)(EA~), equals the value at 

a of 
1 

TF ~ l(K)F r(K)F. 
K state Of A~ 

(This expression depends only on Xl , . . .  ,x~-z since b(l(K)r(K)) = 5(T) 

for every state K of Ai.) 

A probability vector p = (Pl , . - .  ,Pn) is said to re f ine  another probability 

vector q = ( q l , . . . ,  qm) if there is a partition of {1 , . . . ,  n} into m sets $ 1 , . . . ,  Sm 

such that  ~ies~ pi = qj. The following is a straightforward consequence of the 

theorem. 

COROLLARY: If r ~m --+ ~ B  is a (wps-preserving) factor map, then we have 

~t(A,a ) 0 r = #(B,a)" In particular, the probability vector 

(z(A,o) (r~A~),. �9 ~(A,~) (r~A~)) 

refines the analogous probability vector for #(B,a). 

In preparation for the proof of the theorem, we first manipulate the matrix 

A. Using the fact that l and r are over R[fl] c R[/3-] and fl is analytic at a, 

define a diagonal matrix A indexed by the states of A and having z ~(l(O) as its 

I - th  diagonal entry. Replace A by AAA -1, and l, r by IA -1, At .  Note that  the 

basic objects of our discussion, in particular/3, wps of periodic orbits, $(l(I)r(1)) 

and the measures /ZA(~l ..... ~ ) ,  are not altered. We do, however, then have the 

convenience that/5(/(I)) = 0 for every state I of A, which we indicate by saying 
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that  A is lef t  a d a p t e d .  This implies that  A is over Z[x~ , . .  • �9 ., xk_l,  z]. Suppose 

an entry A(I, J) has ~(A(I, J))  < 0. Consider the equation 

zl(J) =  t(K)A(K, J). 
K 

We have 6(~l(J)) = 0 while 6(~  g I(K)A(K, J))  < 0, which is absurd! So, the 

fact that  A is left adapted implies that it is over Z[x~, x + z]. 
�9 " " ' k - - l '  

Next we will recall from [7] the definition and properties of the face AF = AF, Do 
of A corresponding to F and Do. Define row and column vectors lF and rF by 

setting lF(I) = l(I)F, rE(I) = r(I)F for any state I of A. It follows easily 

from Perron-Frobenius theory that  each l f ( I)  and rE(I) is nontrivial and non- 

negative on Do • R ++. It was observed in [7] that the proof of theorem 1 of [4] 

may be adapted to see that  each lF(I), rF(I) is in fact positive on Do • R ++, 

a property we shall make use of in the proof of the present theorem�9 We define 

AF by specifying the weighted subgraph G(AF) of G(A) corresponding to AF. 
For an edge e of G(A), let I(e) and J(e) denote its initial and terminal states, 

respectively. For each state I we have 

13r(I) = ~ wtA(e)r(J(e)). 
l(e)----I 

An edge e belongs to G(AF) if and only if 

6(wtA(e) r( J(e) ) ) = 6(~r( I(e) ) ). 

It is easy to see that AF has the same indexing set as A, no row of A is trivial 

and AF rF -~ ]~F rF. In particular, ~AF ---- ~F. It is also proved in [7] that  the 

irreducible components of AF are precisely the F-components of A. Recall that  

an irreducible component of a nonnegative matrix is called a s ink if we have 

A(I, J) = 0 whenever I is a state of the component and J is not. Similarly, 

the component is called a s o u r c e  if A(I, J) = 0 whenever J is a state of the 

component and I is not. It follows from the equation AFrF ---- ~FrF that  the 

sinks of AF are precisely the principal F-components. 

The definition of AF makes essential use of the right eigenvector of A. We 

could instead use in an analogous way the left eigenvector and, since A is left 

adapted, we would then end up with the matrix obtained from A by setting 

y = 0. This matrix has the F-components of A for its irreducible components 
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and the principal F-components  for sources�9 In particular, if el .-" em is a pa th  

in G(A) such that  J(em) lies in a principal F-component  without el ""em being 

contained in this component then y divides wtA(el em) in Z [ x ~ , . . .  • y]. 
�9 . . ~ X k _ l ,  

We record this as Lemma 2. 

LEMMA 2: I f  e l ' '  "era is a path of G(A) such that the terminal s ta te  J(em) lies 

in a principal F-component and e l . . . e m  is not contained in that component, 

then 5(wtA(el " "em)) >_ 1. 

LEMMA 3: I f  I is a state of a nonprincipal F-component of A then 

5(l(I) r(I)) > 5(A, F). 

Proof: Note that,  as A is left adapted, 5(l(J) r(J)) = 5(r(J)) for every state J .  

Since AF rE -~ ~F rF and rg is positive (positivity at a single point of Do is all 

we need here), we can find a pa th  e l . . . e m  in G(AF) such tha t  I ( e l )  = I while 

J = J(em) lies in a principal F-component .  Then 

5(r( I) ) = 5(r( I) ~m) = 5(wtA(el . .  " era) r( J) ), 

where the first equality follows from 5(~) = 0 and the second from the definition 

of AF. But, by Lemma 2, ~(wtA(el" ". era)) >_ 1 and we conclude tha t  

5(l(I)r(I)) = 5(r(I)) > 5(r(J)) = 5(l(J)r(J))  > 5(A, F). | 

Proof of  the Theorem: 

J = J(em) and 

Let C = [ e l , . . . ,  em]h be a cylinder set. Put  I = I(el) ,  

---- WtA ( e l ' ' -  era) l(I) r ( J ) ,  

so that  the # A ( x l  ..... xk) measure of C is the evaluation at Xl,. �9 xk of o~/T~ m. 

Note that  5(T~ m) = 5(T) = 6(A, F) and that ,  since A is left adapted,  5(I(I)) = 0 

and 5 ( w t A ( e l ' ' .  era)) > 0. If J is not a state of A 1 , . . . ,  AN then, by the definition 

of 5(A, F)  and Lemma 3, 

6(a) >_ 5(r(J)) = 5(l(J)r(J))  > 6(A, F). 

If J is a state of one of A 1 , . . . ,  AN but el �9 .- em is not contained in that  component  

then, by Lemma 2, 5 ( w t A ( e l ' '  "em)) > 1 and we have 

5(a) > 5(r(J)) = 5(A, F). 
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Thus, if C is not contained in one of ~A1,- . . ,  ~A~ then 6(T~ m) < ~i(~) and the 

limit 

( , )  lim #A(~1 ..... ~k)(C) 
(xl,...,~k)--*(al ..... a~_l,0+) 

exists and equals zero. Now suppose C is contained in ~A~ for some 1 < i < n. 

Then ~(TI~ TM) = 6(~) and the limit ( . )  is obtained by canceling the power of z 

dividing the numerator of (~/T~ m with that dividing the denominator and putt ing 

(Xl , . . . ,  xk-1, z) = ( a l , . . . , a k - l , 0 ) .  This yields a positive number because, in 

this case, (~(wtA(el' '  "era)) : 0 and the entries of IF and rE are positive on 

D0 x R ++ [4, 7]. This proves (i) and (ii). 

For (iii) observe that,  since AF rE : ~F rE and Ai is a sink of AF, the re- 

striction of rE to the states of A~ gives a right eigenvector of Ai for ~F = ~A~. 

Similarly, lF restricts to a left eigenvector of Ai. The ~A~(~) measure of the 

cylinder C c ~A~ is then equal to the value at a of 

w t A ( e l ' ' '  era)lF(I)  rE(J) 

/ ~  ~-'~Kstate of A, IF(K) rE(K)" 

On the other hand, the/~(A,~) measure of C is given by the value at a of 

wtA(el " "  e,~)IF(I) rE(J) | 

Note that in this section we took y = z d! for specificity; in many cases a power 

lower than d! may work. In particular, the examples of next section will have the 

property that  y = z works, so that there is no need to introduce the variable z. 

4. E x a m p l e s  

We will present matrices through their labeled directed graphs. Each edge of the 

graph will be labeled by an element of R +, specifying the corresponding entry 

of the matrix. Each matrix will have its weight-per-symbol polytope contained 

in the half-space y _> 0, and we will be concerned with the face F lying in the 

hyperplane y = 0. 

Example 1: Let m be an even integer and consider the following graph: 

ym 

! 
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Then  fl satisfies f12 _ (4 + y)fl + 4 + 2y - ym = 0 and,  wi th  the given ordering of 

states,  has left and right eigenvectors l = (fl - 2, ym) and r = (fl - 2, 1) t. There  

are two F-componen t s ,  bo th  principal: 

2 C  ~ and ~ ~ 2  

Pos tponing  the discussion of the case m = 2, we assume m > 2. Then  /3 is 

analyt ic  a t  y = 0 and, near  y = 0, 

Z = 2 + y + O(y2).  

Since 

and 

5(l(1)r(1))  = 5((~ - 2) 2) = 5(y 2 + O(y3)) = 2 

= = m > 2 ,  

the bounda ry  measure  at  the point  y = 0 is suppor ted  by the first pr incipal  

F - c o m p o n e n t  and is s imply  the measure  of max ima l  en t ropy on this two-shift.  

Example 2: Now take m = 2 in the graph  above, and let B be the corresponding 

1 v/5) is the golden mean.  Let matr ix .  Then  ~ = ~B ---- 2 Jr- py where p = ~(1 + 

B1, B2 be the F - c o m p o n e n t s  of B corresponding to s ta tes  1 and 2, respectively. 

Since we now have 

6(/(1)r(1))  = 5(/(2)r(2))  = 2, 

the bounda ry  measure  at y = 0 is suppor ted  by ~B1 [--j ~B2" Moreover,  

l ( 1 ) F r ( 1 ) g  = ( Z - -  2) 2 = p2y2 = (1 + p)y2, 

l(2)F r (2 ) .  = y2, 

so tha t  EB1 EB2 have measure  1~+ 1 respectively. ' 2+p ~ 2-{-p' 

Next let A be the ma t r ix  corresponding to the following graph: 

2 + y  

�9 
2 



122 E. CAWLEY,  B. MARCUS AND S. T U N C E L  Isr. J. Math .  

Then /3A ---- /3 = /3B = 2 + py  and, with the given ordering of states, the corre- 

sponding left and right eigenvectors are: 

l = IA = ((2 + y)(/3 - 2), 2(~ -- 2 - y), y2~, y2), 

r = r A  = ( ~  - -  2 , ~ - -  2 - -  y ,  1 , ~ )  t. 

The matr ix  A three F-components  A1, A2, A3, corresponding to the graphs 
2 2 

8 8 
4 

All three F-components  are principal, 

5(A ,  F)  = 5(A1) = 5(A2) = 5(A3) = 2, 

and an easy calculation shows that  the boundary measure at y = 0 assigns 

p+l 2-p 2 to EA1, EA2, EA3. Observe that  the probabili ty vector measure 5 , 5 , 
(P5+l 2-p 2 / l+p 1 ) .  a quick way of seeing this is to check , 5 , ~) does not refine \2+p ,  2+p , 

that  no entry of the first vector is equal to an entry of the second. In view of 

the corollary in section 3, this shows that  there is no (wps-preserving) factor 

map of EA onto EB. We also remark that  consideration of periodic points (zeta 

functions) reveals that  there in no factor map of EB onto EA, even if we drop 

the requirement that  the map be wps-preserving. On the other hand we can find 

a nontrivial matr ix  S over R + satisfy ng A S  = S B .  In particular such a matr ix  

can be constructed from the eigenvectors. By [5], it follows that  EA and EB have 

a common extension by wps-preserving factor maps. 

E x a m p l e  3: In order to define the boundary measure at a point, we needed/3 to 

be analytic at that  boundary point. In this example we indicate what can happen 

if/3 is not analytic at the boundary point. Let A be defined by the following 

graph: 

1 

Y 

Then there are two F-components,  with matrices A1 = [2] and A2 = [1 + x], so 

that  
J" 2 if 0 < x _< 1, /3F(x) l + x  i fx_> 1. 
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The eigenvectors of A are l = (y,/3 - 2) and r = (1,/3 - 2) t. Clearly /3 is not  

analytic at (x, y) = (1, 0). But  it is analytic at every point  (a, 0) with a > 0, 

a r 1. For 0 < a < 1 we have 6(A1) = 6(y) = 1 and, since /3(a,0) = 2 

for 0 < a < 1, we also have 6(A2) = 6 ( ( / 3 -  2) 2 ) _> 2. Thus, in this case 

#(A,~) is suppor ted  by EA1. On the other  hand, for a > 1 we have 6(A1) -- 1, 

6(A2) = 6((x - 1) 2) = 0 which means tha t  tt(A,~ ) is suppor ted  by EA2. So, the 

measure (even the support)  we get depends on the pa th  along which we approach 

(1, 0). This s i tuat ion is reminiscent of  a "phase transi t ion".  
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